An Application of Martin-Löf Randomness to Effective Probability Theory
نویسندگان
چکیده
In this paper we provide a framework for computable analysis of measure, probability and integration theories. We work on computable metric spaces with computable Borel probability measures. We introduce and study the framework of layerwise computability which lies on Martin-Löf randomness and the existence of a universal randomness test. We then prove characterizations of effective notions of measurability and integrability in terms of layerwise computability. On the one hand it gives a simple way of handling effective measure theory, on the other hand it provides powerful tools to study Martin-Löf randomness, as illustrated in a sequel paper.
منابع مشابه
Algorithmically random closed sets and probability
by Logan M. Axon Algorithmic randomness in the Cantor space, 2 ω , has recently become the subject of intense study. Originally defined in terms of the fair coin measure, algorithmic randomness has since been extended, for example in Reimann and Slaman [22, 23], to more general measures. Others have meanwhile developed definitions of algorithmic randomness for different spaces, for example the ...
متن کاملEffective Randomness for Computable Probability Measures
Any notion of effective randomness that is defined with respect to arbitrary computable probability measures canonically induces an equivalence relation on such measures for which two measures are considered equivalent if their respective classes of random elements coincide. Elaborating on work of Bienvenu [1], we determine all the implications that hold between the equivalence relations induce...
متن کاملAn Operational Characterization of the Notion of Probability by Algorithmic Randomness
The notion of probability plays an important role in almost all areas of science. In modern mathematics, however, probability theory means nothing other than measure theory, and an operational characterization of the notion of probability is not established yet. In this paper, based on the toolkit of algorithmic randomness we present an operational characterization of the notion of probability ...
متن کاملMartin-LöF Randomness in Spaces of Closed Sets
Algorithmic randomness was originally defined for Cantor space with the fair-coin measure. Recent work has examined algorithmic randomness in new contexts, in particular closed subsets of 2ω ([2] and [8]). In this paper we use the probability theory of closed set-valued random variables (RACS) to extend the definition of Martin-Löf randomness to spaces of closed subsets of locally compact, Haus...
متن کاملAn Operational Characterization of the Notion of Probability by Algorithmic Randomness and Its Application to Cryptography
The notion of probability plays an important role in almost all areas of science, including cryptography. In modern mathematics, however, probability theory means nothing other than measure theory, and the operational characterization of the notion of probability is not established yet. In this paper, based on the toolkit of algorithmic randomness we present an operational characterization of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009